Characterization of cellobiose fermentations to ethanol by yeasts.

نویسندگان

  • S N Freer
  • R W Detroy
چکیده

Twenty-two different yeasts were screened for their ability to ferment both glucose and cellobiose. The fermentation characteristics of Candida lusitaniae (NRRL Y-5394) and C. wickerhamii (NRRL Y-2563) were selected for further study because their initial rate of ethanol production from cellobiose was faster than the other test cultures. C. lusitaniae produced 44 g/L ethanol from 90 g/L cellobiose after 5-7 days. When higher carbohydrate concentrations were employed, fermentation ceased when the ethanol concentration reached 45-60 g/L. C. lusitaniae exhibited barely detectable levels of beta-glucosidase, even though the culture actively fermented cellobiose. C. wickerhamii produced ethanol from cellobiose at a rate equivalent to C. lusitaniae; however, once the ethanol concentration reached 20 g/L, fermentation ceased. Using p-nitrophenyl-beta-D-glucopyranoside (pNPG) as substrate, beta-glucosidase (3-5 U/mL) was detected when C. wickerhamii was grown anaerobically on glucose or cellobiose. About 35% of the beta-glucosidase activity was excreted into the medium. The cell-associated activity was highest against pNPG and salicin. Approximately 100-fold less activity was detected with cellobiose as substrate. When empolying these organisms in a simultaneous saccharification-fermentation of avicel, using Trichoderma reesei cellulase as the saccharifying agent, 10-30% more ethanol was produced by the two yeasts capable of fermenting cellobiose than by the control, Saccharomyces cerevisiae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of thermotolerant yeasts in controlled simultaneous saccharifications and fermentations of cellulose to ethanol.

Simultaneous saccharification and fermentation (SSF) experiments were performed at selected temperatures (37, 41, and 43 degrees C) to obtain comprehensive material balance and performance data for several promising strains of thermotolerant yeast. Parameters measured were ethanol concentration, yeast cell density, and residual sugar and cellulose concentrations. The three yeasts Saccharomyces ...

متن کامل

Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum.

Fermentation of cellulosic and hemicellulosic sugars from biomass could resolve food-versus-fuel conflicts inherent in the bioconversion of grains. However, the inability to coferment glucose and xylose is a major challenge to the economical use of lignocellulose as a feedstock. Simultaneous cofermentation of glucose, xylose, and cellobiose is problematic for most microbes because glucose repre...

متن کامل

Alcoholic Fermentation of d-Xylose by Yeasts.

Type strains of 200 species of yeasts able to ferment glucose and grow on xylose were screened for fermentation of d-xylose. In most of the strains tested, ethanol production was negligible. Nineteen were found to produce between 0.1 and 1.0 g of ethanol per liter. Strains of the following species produce more than 1 g of ethanol per liter in the fermentation test with 2% xylose: Brettanomyces ...

متن کامل

Adaptive Control of Continuous Fermentation with Immobilized Yeasts Saccharomyces Cerevisiae

In this paper, a new approach for adaptive linearizing control of continuous fermentations with immobilized yeasts Saccharomyces cerevisiae BO 213 was proposed. Three fermentations with three different procedures of cells immobilization were investigated. The switching from batch to continuous mode of cultivation was realized automatically in time when the ethanol production rate reaches its ma...

متن کامل

Oxygen-limited cellobiose fermentation and the characterization of the cellobiase of an industrial Dekkera/Brettanomyces bruxellensis strain

The discovery of a novel yeast with a natural capacity to produce ethanol from lignocellulosic substrates (second-generation ethanol) is of great significance for bioethanol technology. While there are some yeast strains capable of assimilating cellobiose in aerobic laboratory conditions, the predominant sugar in the treatment of lignocellulosic material, little is known about this ability in r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 1983